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s u m m a r y

Flow-model particle-tracking results and geochemical data from seven study areas across the United
States were analyzed using three statistical methods to test the hypothesis that these variables can suc-
cessfully be used to assess public supply well vulnerability to arsenic and uranium. Principal components
analysis indicated that arsenic and uranium concentrations were associated with particle-tracking vari-
ables that simulate time of travel and water fluxes through aquifer systems and also through specific
redox and pH zones within aquifers. Time-of-travel variables are important because many geochemical
reactions are kinetically limited, and geochemical zonation can account for different modes of mobiliza-
tion and fate. Spearman correlation analysis established statistical significance for correlations of arsenic
and uranium concentrations with variables derived using the particle-tracking routines. Correlations
between uranium concentrations and particle-tracking variables were generally strongest for variables
computed for distinct redox zones. Classification tree analysis on arsenic concentrations yielded a quan-
titative categorical model using time-of-travel variables and solid-phase-arsenic concentrations. The
classification tree model accuracy on the learning data subset was 70%, and on the testing data subset,
79%, demonstrating one application in which particle-tracking variables can be used predictively in a
quantitative screening-level assessment of public supply well vulnerability. Ground-water management
actions that are based on avoidance of young ground water, reflecting the premise that young ground
water is more vulnerable to anthropogenic contaminants than is old ground water, may inadvertently
lead to increased vulnerability to natural contaminants due to the tendency for concentrations of many
natural contaminants to increase with increasing ground-water residence time.

Published by Elsevier B.V.
Introduction

Ground-water vulnerability assessments are frequently used to
direct resource monitoring, prioritize aquifer protection efforts,
and guide placement of public supply wells. Vulnerability assess-
ments range in sophistication from simple, qualitative, subjective
evaluations to complex, quantitative, scientifically defensible
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investigations, and a key challenge often is to find an optimal bal-
ance among assessment complexity, uncertainty and cost (Focazio
et al., 2002). Vulnerability assessments frequently focus on charac-
terization of anthropogenic contaminant loads from near land sur-
face to the water table (Witkowski, 2007), and for simplicity often
ignore transport beyond the water table. This focus on anthropo-
genic contamination was explicitly incorporated in the widely used
vulnerability tool ‘‘DRASTIC” (Aller et al., 1987), which continues to
see widespread worldwide use (Focazio et al., 2002). Focus on
anthropogenic contaminants occurs in spite of the fact that many
natural contaminants pose human health threats and are widely
regulated. Natural contaminants help comprise the contaminant
group (inorganic chemicals) that had the highest percent of maxi-
mum contaminant level (MCL) violations in United States (US)
public water systems that used ground water during the period
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1993–1998 (US Environmental Protection Agency, 1999). Focazio
et al. (2002) define a ‘‘contaminant” to be a ‘‘chemical or physical
property of the ground-water resource in question that is not
desirable from a health or other perspective such as interference
with water-treatment practices.” A natural contaminant is one that
has primarily natural (often geologic) sources.

Public supply wells may deserve particular attention in vulner-
ability assessments because of the heavy reliance on ground water
as a source of public supply. For example, in the year 2000, about
31% of the total US population was served by public supply of
ground-water origin (Hutson et al., 2004). In spite of the impor-
tance of ground water as a source of public supply, though, charac-
terization of the vulnerability of public supply wells is challenging
due to difficulties in elucidating sources to wells, a problem com-
pounded by complexities introduced by the mixing of different
flow components that results from the typically long screened
intervals of public supply wells.

A key challenge to assessing vulnerability to natural contami-
nants arises from difficulties inherent in accounting for mobiliza-
tion of natural contaminants. Mobilization of natural
contaminants typically is constrained by the kinetically limited
nature of water–rock interactions (Hem, 1985). In theory, the ki-
netic aspects of water–rock interactions can be accounted for with
the application of flow modeling and particle-tracking to represent
ground-water residence times, and the aforementioned complexi-
ties of ground water advection through heterogeneous flow sys-
tems to public supply wells also can be simulated with flow
modeling and particle-tracking techniques.

The purpose of this work was to test the hypothesis that ground-
water flow model analysis and geochemical data that describe
aquifer systems at large spatial scales (tens to thousands of square
kilometers) can successfully be combined to assess public supply
well vulnerability to two natural contaminants, arsenic and ura-
nium. Arsenic and uranium are ubiquitous natural ground-water
contaminants of global concern (Cothern and Lappenbusch, 1983;
Wanty and Nordstrom, 1993; Welch et al., 2000; Nordstrom,
2002). Results are presented from seven study areas in six US Geo-
logical Survey (USGS) National Water-Quality Assessment (NAW-
QA) Program study units (Gilliom et al., 1995) in four principal
aquifers (Miller, 2000). Three statistical methods are used to ana-
lyze the following variables: a suite of time-of-travel and water-
flux variables (including variables based on geochemical zonation),
aqueous geochemical variables, and solid-phase trace-element
variables. Emphasis is on the utility of particle-tracking variables
because such flow-model-based variables can be used to account
for contaminant mobilization, transport, and fate in heterogeneous
aquifers, and because they have the potential to be used in a predic-
tive manner. Predictor variables may be useful in relatively unstud-
ied portions of aquifers where they can be generated prior to
resource development and monitoring. The three statistical meth-
ods employed are principal components analysis (PCA) (Preisen-
dorfer and Mobley, 1988), Spearman correlation analysis (Helsel
and Hirsch, 1992), and classification tree analysis (Breiman et al.,
1984). PCA provides a geochemical framework for understanding
natural contaminants occurrence patterns in these systems and
identifies associations between measured solutes and particle-
tracking variables that represent important mobilization and trans-
port processes. Spearman correlation analysis establishes the sta-
tistical significance of correlations between particle-tracking
variables and arsenic and uranium concentrations. Classification
tree analysis demonstrates an application of the use of particle-
tracking and solid-phase variables in a screening-level, predictive
vulnerability assessment. Thus, the combination of these three sta-
tistical approaches allows identification of particle-tracking vari-
ables that can be useful in vulnerability analysis, builds upon this
by establishing levels of statistical significance for correlations be-
tween particle-tracking variables and natural contaminants, and
then allows the demonstration of an application using some of
these variables in a vulnerability assessment tool for public supply
wells. Although analysis is restricted to arsenic and uranium, the
approach of using particle-tracking and other predictor variables
could be modified for other contaminants.

The approaches used have several limitations. Flow models and
particle-tracking are inherently uncertain, as are estimates of
source-term strength for natural contaminants. Also, the large spa-
tial scale of the observations and the reliance on statistical infer-
ence do not lend themselves to well developed process-based
understanding. Therefore, approaches presented here may most
appropriately be used as a method for prioritizing the locations
and types of more refined, site-specific vulnerability assessments.
However, the combination of particle-tracking analysis and geo-
chemical data to assess public supply well vulnerability to natural
contaminants has seen little application to date, and the results
presented in this paper demonstrate approaches that could easily
be applied in other aquifers.

Study design

Study areas

Data gathering and particle-tracking analysis were done for se-
ven study areas representing a variety of hydrologic, geologic,
physiographic, and climatic conditions (Fig. 1). Study areas ranged
in size from 60 km2 (Basin and Range 1) to 2700 km2 (Central Val-
ley). Each study area was nested within a NAWQA study unit.
Study areas are synonymous with model areas. Data from study
areas were combined for analysis to demonstrate widespread
applicability of results. Results presented in this paper are part of
a broader, multi-scale assessment of public supply well vulnerabil-
ity to anthropogenic and natural contaminants (Eberts et al., 2005).

Datasets

Three complementary datasets were assembled for this work.
They consisted of aqueous geochemical data, flow-model-derived
variables (henceforth, ‘‘particle-tracking dataset”), and solid-phase
geochemical data.

Aqueous geochemical dataset
The aqueous geochemical dataset (Table S1 in supporting infor-

mation) included sites with analyses of the natural contaminants
arsenic and uranium; the redox indicator species dissolved oxygen
(O2), nitrate (NO3), manganese (Mn), iron (Fe), and sulfate (SO4);
pH; alkalinity (alk); and filtered (dissolved) organic carbon
(DOC). Of the 368 sites for which arsenic and/or uranium data were
available, 312 contained arsenic data and 289 contained uranium
data; data for other analytes were present to varying degrees. This
dataset was composed of two groups of data. One group (273
wells) was existing data collected primarily from public supply
wells but also including domestic and ambient monitoring wells.
Samples were restricted to the time period 1997–2001, and were
assembled from USGS and other public databases. Samples that
had been treated (e.g., chlorinated) or that came from blended
sources (multiple public supply wells) were excluded. The second
group (95 wells) consisted of newly collected data from additional
public supply wells sampled during 2001–2003 in the seven study
areas as part of the NAWQA Program.

Particle-tracking dataset
The particle-tracking dataset (145 sites; Table S2 in supporting

information), a subset of the wells represented in the aqueous geo-
chemical dataset, included analysis using three-dimensional



Fig. 1. Location of study areas, NAWQA study units, and principal aquifers. NAWQA study units are SANJ (San Joaquin), NVBR (Nevada Basin and Range), GRSL (Great Salt
Lake), HPGW (High Plains Ground Water), WHMI (White-Miami), and CONN (Connecticut); study areas are: Central Valley (SANJ), Basin and Range 1 and Basin and Range 2
(two study areas in northern NVRB), Basin and Range 3 (GRSL), High Plains (HPGW), Glacial 1 (WHMI), and Glacial 2 (CONN); study units and study areas are described in
Paschke (2007).
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numerical ground-water flow modeling and particle-tracking to
derive a variety of time-of-travel and other flow-model-based vari-
ables. These variables are different statistical measures of (1) over-
all simulated time of travel and water flux, and (2) simulated time
of travel and water flux through distinct geochemical zones (de-
scribed below). The wells consisted solely of public supply wells.
Of the 145 wells, 138 contained arsenic data and 128 contained
uranium data; particle-tracking variables were available for all
wells in this dataset.

Steady-state ground-water flow was simulated with the modu-
lar finite-difference ground-water flow simulation code MOD-
FLOW-2000 (Harbaugh et al., 2000), and calibrated, using
pumping and water-level data, following guidelines of Hill
(1998). Hydraulic conditions for the period 1997–2001 were used
to facilitate comparisons of modeling results among study areas.
The particle-tracking program MODPATH (Pollock, 1994) was used
to compute advective time of travel to individual public supply
wells. MODPATH uses the flow regime calculated by MODFLOW
to simulate the ground-water flow velocity distribution through-
out an aquifer. This velocity distribution is then used to determine
flow paths of water particles in the aquifer. Time of travel along
flow paths is computed by MODPATH using the magnitude of
fluxes between model cells, porosity of the aquifer represented
by these cells, and the dimensions of the cells. Potential problems
associated with weak sinks (model cells with discharge rates insuf-
ficient to capture all particles entering the cell) were addressed by
using the grid-refinement program of Spitz (2001) for model cells
in which public supply wells were located. Well selection criteria
for particle-tracking included approximately equal proportions of
wells representing each quartile of pumping rates within each
study area. Paschke (2007) provides detailed discussion of the con-
ceptualization, simulation and calibration of individual ground-
water flow models; description of the particle-tracking simulation
(including implementation of the grid-refinement program) for
each study area; and a data dictionary describing the particle-
tracking variables.

Uncertainties in flow modeling and particle-tracking arise from
simplification and bias in the representation of aquifer properties
and stresses. Comparison between particle-tracking-derived mea-
sures of time of travel and tritium concentrations in ground water
can provide evidence for the reliability of particle-tracking results.
In public supply wells, where water typically is composed of mix-
tures of different residence times, tritium concentrations should
generally increase as the proportion of post-bomb ground water
increases. Thus, although tritium concentrations have not in-
creased monotonically in recent decades, tritium concentra-
tions—representing contributions of post-bomb water in ground-
water mixtures in public supply wells—would be expected to have
some correlation with proportions of young particles from particle-
tracking simulations if the flow models adequately represent the
flow systems being modeled. Tritium data exist for 23 of the public
supply wells for which particle-tracking simulations were done
(samples collected from six study units, during 1987–2006; Table
S3 in supporting information). An inverse linear correlation be-
tween tritium concentration and log of median time of travel
was observed, with r2 = 0.25 and p = 0.015, providing support for
the particle-tracking analysis. This p-value, although above the
0.01 significance level used in other correlation analysis in this pa-
per, may reflect the small sample size of this analysis, and is of
greater statistical significance than the 0.05 significance level typ-
ically used in hydrologic studies (Helsel and Hirsch, 1992, p. 106).
The r2 value likely reflects the complexities of ground-water mix-
tures in long-screened public supply wells and the nonlinear
changes in tritium concentrations over time.
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To help account for geochemical controls on arsenic and ura-
nium mobilization, transport, and fate, flow model domains were
discretized to represent dominant redox and pH zones, and parti-
cle-tracking variables representing simulated time of travel and
water flux through these geochemical zones were calculated for
each public supply well contributing zone (Paschke, 2007). Thus,
non-geochemically based particle-tracking variables capture the
general effects of reaction kinetics, whereas geochemically based
particle-tracking variables account for residence time in and fluxes
through the zones in which different mobilization mechanisms
may be operating. As such, geochemically based particle-tracking
variables have the potential to contribute geochemical process-
based understanding to the characterization of public supply well
vulnerability to natural contaminants, and also to contribute to
the broad identification of the dominant geochemical reactions
responsible for mobilization of natural contaminants within a gi-
ven dataset. Redox conditions were inferred on the basis of termi-
nal electron accepting processes and were simplified to (1) O2- and
NO3-reducing, and (2) Fe- and Mn-reducing. (O2-reducing water is
oxic water in which O2 is available for reduction; it is not anoxic
water.) Zones for pH were pH < 8 and pH > 8.

Solid-phase geochemical dataset
Solid-phase geochemical data (Table 1) were gathered for use in

classification tree analysis to represent differences in potential ar-
senic and uranium source strength among study areas. Three na-
tional scale datasets were evaluated. One dataset consisted of
NAWQA streambed sediment samples (Stephens, 2003). Stream-
bed sediment integrates near-surface geologic materials upstream
from sampling points and provides a means of representing regio-
nal differences in geologic materials. NAWQA streambed sediment
samples represent primarily NAWQA occurrence and distribution
(ambient monitoring) samples (Gilliom et al., 1995). Streambed
sediment samples at each site were composited from approxi-
mately 5–10 depositional zones, wet sieved on-site to finer than
63 lm (Shelton and Capel, 1994), and analyzed for elemental com-
position (Sanzolone and Ryder, 1989; Arbogast, 1990; Briggs and
Meier, 1999).

The second dataset was a preliminary version of the USGS Na-
tional Geochemical Survey (NGS) (Grossman, 2004). A similar pre-
liminary dataset (arsenic only) was published by Grosz et al.
(2004). The NGS dataset consists of over 20,000 streambed sedi-
ment and soil samples. At the time of this analysis, the NGS cov-
ered about 75% of the US (arsenic) and 65% of the US (uranium).

The third dataset was a coverage of arsenic concentrations in
surficial soils, identical to a map published by Gustavsson et al.
(2001), and created for this project using the original raw data
and the interpolation methods of Gustavsson et al. (2001). The
small number of samples (1323 for the conterminous US) and
point-specific nature of soil samples (compared with the inte-
grated nature of streambed sediment samples) are limitations.

Comparison of the three datasets facilitates evaluation of the
value of these solid-phase data. Absolute differences in concentra-
tions among the three datasets may reflect, in part, differences in
sample medium and in processing and analysis. For example,
NAWQA streambed sediment samples were finer than 63 lm,
whereas NGS samples were sieved to finer than 150 lm, and soils
from the NGS and Gustavsson et al. (2001) datasets may represent
a more weathered geologic material than streambed sediment. Rel-
ative differences in concentrations among study units and study
areas within individual datasets should be more useful in deter-
mining patterns of trace element occurrence in solid phases. For ar-
senic, all three datasets generally show similar patterns of
enrichment or depletion in solid phases (Table 1), suggesting that
the solid-phase data have utility in representing relative differ-
ences in geologic material source strength for arsenic among study
units and study areas. The more limited data for uranium make
comparisons for uranium difficult.

For classification tree analysis, median values from NAWQA
study unit streambed sediment were used. NGS data were not used
because they were not available for all study areas. Soils data of
Gustavsson et al. (2001) were not used because they lacked ura-
nium analyses, in addition to having other limitations discussed
above.

Approach and methods of analysis

The aqueous geochemical dataset, representing the greatest
number of wells, characterizes the status and geochemistry of ar-
senic and uranium occurrence in the study areas. The particle-
tracking dataset can be used to elucidate flow system controls on
arsenic and uranium occurrence and, thus, to infer processes of ar-
senic and uranium mobilization and transport to public supply
wells. Particle-tracking variables also can be used in a predictive
manner. The solid-phase geochemical variables can be used as cat-
egorical predictor variables in classification tree analysis to repre-
sent potential source strength. That is, for a given degree of
mobilization strength (represented, for example, by exposure of
ground water to aquifer materials over a given length of time),
higher concentrations of natural contaminants associated with so-
lid phases may lead to the development of higher concentrations of
those natural contaminants in the aqueous phase.

Principal components analysis
PCA is used to objectively reduce the number of variables in a

dataset to a few principal components (PCs) that capture much
of the total dataset variability, and identify structures of or rela-
tions among variables, based upon the relative weights (or load-
ings) of variables contributing to each of the dominant PCs.
Principal components are linear combinations of the original vari-
ables and are ordered so that PC1 explains the largest amount of
variability in the data, PC2, the second largest amount, and so on.
PC loadings quantitatively express the degree of association be-
tween individual variables and the relative importance in describ-
ing the variability.

For PCA on the aqueous geochemical dataset, a subset of the en-
tire aqueous geochemical dataset was used. This subset consisted
of samples with complete suites of analytes deemed most perti-
nent for the analysis: arsenic, uranium, O2, NO3, Mn, Fe, SO4, pH,
Alk, and DOC. These variables represent the two natural contami-
nants of interest, redox indicator species (O2, NO3, Mn, Fe, SO4),
constituents that may form important complexes with uranium
(SO4, Alk, DOC), and pH (important for arsenic mobilization in
some environments). Samples from 125 sites contained all
analytes.

A PCA focusing on arsenic and particle-tracking variables was
based on nine variables: arsenic, O2, NO3, Mn, Fe, median simulated
time of travel (TT median), median simulated time of travel in the
Fe- and Mn-reducing zone (TT Fe median), median simulated time
of travel in the zone of elevated pH (pH > 8) (TT pH8 median), and
percent of simulated time of travel in the Fe- and Mn-reducing
zone (%TT Fe). These particle-tracking variables were chosen be-
cause they represent different aspects of mobilization processes:
a general time-of-travel variable (TT median), two redox-zonation
based variables (TT Fe median, %TT Fe), and a pH-zonation based
variable (TT pH8 median). Samples from 87 sites contained these
analytes and particle-tracking variables. This analysis allowed elu-
cidation of associations between arsenic and several important re-
dox indicator species and particle-tracking variables. Analysis of
measured redox indicator species and of redox-based particle-
tracking variables also provided an opportunity to qualitatively
evaluate the effectiveness of flow model redox zonation.



Table 1
Arsenic and uranium concentrations in sediment and soil. (‘‘–”, data not available or insufficient to report.).

Study unit and study area Regiona Arsenic concentration (mg/kg, or parts per million) Uranium concentration (mg/kg, or parts per million)

NAWQA streambed sedimentb USGS National Geochemical Surveyc Gustavsson et al. (2001) Soilsd NAWQA streambed sedimentb USGS National Geochemical Surveyc

Median Mean Median Mean Median Mean Median Mean Median Mean

CONN Glacial 2 Study unit 5.8 (n = 43) 7.3 (n = 43) 2.4 3.3 5.1 5.2 5.0 (n = 43) 5.4 (n = 43) 4.2 4.6
Study area – – – 3.2 – 5.3 – – – 5.8

GRSL Basin and Range 3 Study unit 14 (n = 12) 80 (n = 12) – – 7.9 9.9 3.0 (n = 12) 4.8 (n = 12) – –
Study area – – – – – 11 – – – –

HPGW High Plainse Study unit 6.3 (n = 62) 6.7 (n = 62) – – 6.0 6.2 1.3 (n = 62) 1.4 (n = 62) – –
Study area – – – 11 – 7.1 – – – 3.2

NVBR Basin and Range 1f Study unit 21 (n = 11) 31 (n = 11) 9.5 13 10 11 4.4 (n = 11) 8.0 (n = 11) 2.3 2.6
Study area – – – 4.5 – 9.0 – – – 1.7

NVBR Basin and Range 2f Study unit 21 (n = 11) 31 (n = 11) 9.5 13 10 11 4.4 (n = 11) 8.0 (n = 11) 2.3 2.6
Study area – – – 5.5 – 9.4 – – – 3.0

SANJ Central Valley Study unit 9.6 (n = 17) 12 (n = 17) 4.9 7.2 5.1 5.4 5.7 (n = 17) 8.0 (n = 17) – –
Study area – – – 3.5 – 3.2 – – – –

WHMI Glacial 1 Study unit 8.3 (n = 28) 8.5 (n = 28) – – 9.7 10 3.3 (n = 28) 3.2 (n = 28) – –
Study area – – – – – 12 – – – –

a ‘‘Study unit” refers to a NAWQA hydrologic component, whereas ‘‘Study area” refers specifically to a model area component used in this paper. Study areas are nested in study units.
b Streambed sediment data are reported for study units but not for study areas because data were too sparse for the latter.
c National Geochemical Survey data are reported for study units and study areas in which >90% of the study unit or study area is represented in National Geochemical Survey grid coverages.
d Soils data (arsenic only; soils were not analyzed for uranium) are reported for study units (median and mean) and study areas (mean only; insufficient grid density for meaningful median); these data were derived from a grid

coverage of soils data.
e The High Plains NAWQA study unit encompasses parts of eight mid-western states, so the more appropriately scaled Lower Kansas River Basin NAWQA pilot study unit, which is located in Nebraska and Kansas and

encompasses all of the High Plains study area, was used instead of the entire High Plains study unit. The Lower Kansas River Basin study was conducted prior to full implementation of the NAWQA Program. Uranium analysis was
done with a single-acid digestion (boiling with nitric acid) and thus the uranium streambed sediment samples likely have a low bias. Other uranium analyses, and all arsenic analyses, represent totals in streambed sediment.

f The Nevada Basin and Range NAWQA study unit contains separate northern (Truckee/Carson Basins) and southern (Las Vegas Valley) regions, so the more appropriately located northern component was used to represent the
Basin and Range 1 and 2 study units.
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Finally, a PCA focusing on uranium and particle-tracking vari-
ables was based on nine variables, including a larger suite of parti-
cle-tracking variables: uranium, five general particle-tracking
variables (TT median; minimum simulated time of travel: TT
Min; maximum simulated time of travel: TT Max; percent of sim-
ulated water flux with time of travel <10 years: %TT 10�; and per-
cent of simulated water flux with time of travel P200 years: %TT
200+), two redox-zonation based particle-tracking variables (med-
ian simulated time of travel in the O2- and NO3-reducing zone: TT
O2 median; percent of simulated water flux from the O2- and NO3-
reducing zone: %Flux O2), and one pH-zonation based particle-
tracking variable (TT pH8 median). Samples from 128 sites were
represented. This analysis highlighted associations between ura-
nium and a more extensive suite of particle-tracking variables.

S-PLUS software was used for PCA (Insightful Corporation,
2001; Venables and Ripley, 2002). Data variables were transformed
to utilize correlations instead of covariances, circumventing poten-
tial problems associated with use of disparate units.

Spearman correlation analysis
Spearman correlation analysis is a nonparametric correlation

analysis based upon the ranks of the data—that is, it measures
the strength of monotonic (including nonlinear) correlations, and
as such, it is well suited for non-normally distributed data.
Although simple parametric or nonparametric correlations com-
monly have insufficient explanatory power for use in vulnerability
analysis by themselves, identification of statistically significant
correlations can provide insight for other applications in which
the same or similar variables are used. SAS software (SAS Institute,
1989) was used for Spearman correlation analysis.

Classification tree analysis
Classification tree analysis is a nonparametric method in

which a dataset is partitioned recursively into increasingly homo-
geneous subsets. Partitioning is optimized by maximizing the de-
crease in ‘‘deviance” (Venables and Ripley, 2002) or ‘‘impurity”
(Breiman et al., 1984) in the split groups; that is, choosing the
predictor variable and splitting value that yield the most homoge-
neous subsets. The recursive splitting yields models that schemat-
ically resemble trees, similar to dichotomous classification keys
commonly used in botanical identification and medical decision
schemes. These recursive models can uncover relations that are
logical, but may be difficult to identify with linear statistical mod-
els. This can be advantageous where interactions among predictor
variables are neither additive nor multiplicative. Both continuous
and categorical data can be used in classification tree analysis.
Classification tree analysis has been used to evaluate factors con-
trolling pesticide concentration variability in streams (Qian and
Anderson, 1999) and to infer nitrate sources in ground water
(Spruill et al., 2002).

S-PLUS software was used for classification tree analysis
(Insightful Corporation, 2001; Venables and Ripley, 2002). Model
building was done using predictive variables: particle-tracking
variables (including geochemistry-based ones) from the Spear-
man correlation analysis, plus study-unit-level arsenic and ura-
nium concentrations in streambed sediment. The use of study-
unit-level streambed sediment data results in a categorical vari-
able in which all sites in a given study unit are assigned the same
streambed sediment value. A variety of response variable classes
(ranges of arsenic and uranium concentrations), based on trial-
and-error, was used during model development. Random num-
bers were assigned to samples for the purposes of dividing the
overall dataset into learning and testing datasets. The learning
dataset was used to develop classification tree models, whereas
the testing dataset was used to evaluate the predictive capability
of the models.
Results and discussion

Arsenic and uranium concentrations

In the aqueous geochemical dataset, arsenic concentrations ran-
ged from <2 to 139 lg/L. Samples from 12% of these sites exceeded
the US Environmental Protection Agency (USEPA) MCL of 10 lg/L,
with exceedances in six of the seven study areas. Uranium concen-
trations ranged from <0.02 to 1240 lg/L. Samples from 11% of
these sites exceeded the USEPA MCL of 30 lg/L, with exceedances
in three of the seven study areas.

In the particle-tracking dataset, arsenic concentrations ranged
from <2 to 30 lg/L. Samples from 12% of these sites exceeded the
USEPA MCL for arsenic, with exceedances in five of the seven study
areas. Uranium concentrations ranged from 0.02 to 67 lg/L. Sam-
ples from 8% of these sites exceeded the USEPA MCL for uranium,
with exceedances in three of the seven study areas.

These results are similar to results of other studies at local, re-
gional, and national scales that demonstrate widespread occur-
rence of natural contaminants in ground and drinking water (e.g.,
Ryker, 2003; Focazio et al., 2006). These data demonstrate that nat-
ural contaminants deserve attention in vulnerability analysis.

Principal components analysis

PCA was used to characterize geochemical occurrence patterns
in the aqueous geochemical dataset, and then used to demonstrate
that the combination of particle-tracking analysis and geochemical
data could be useful in understanding public supply well vulnera-
bility to arsenic and uranium. Geochemical controls over arsenic
and uranium mobilization and fate in ground water have been well
studied, and evaluation of occurrence patterns in the aqueous geo-
chemical dataset was done to place this dataset in the context of
these known processes. However, the degree to which arsenic
and uranium occurrence in public supply wells might be related
to and characterized by a combination of flow-model and geo-
chemical variables has received little attention, and it is elucida-
tion of associations between geochemical and particle-tracking
variables and the usefulness of these relations in vulnerability
assessments that is of primary interest in this paper.

The first three PCs from a PCA on the aqueous geochemical
dataset are shown in Fig. 2a. These three PCs account for 51% of
the total variance. Component 1 is dominated by Mn (positive), ar-
senic (positive), and O2 (negative). The opposing loadings of Mn
and O2 reflect the thermodynamically different redox environ-
ments that these redox indicator species represent; loadings for
Fe (positive) and NO3 (negative), although smaller than the load-
ings of Mn and O2, may reflect the common association of Mn
and Fe in reducing environments, and the common association of
O2 and NO3 in oxidizing environments (McMahon and Chapelle,
2008). The association of arsenic with Mn in component 1 is con-
sistent with the widespread importance of reducing conditions
for arsenic mobilization (Smedley and Kinniburgh, 2002). Arsenic
mobilization under Fe- and Mn-reducing conditions has been
attributed to reductive dissolution of iron and manganese oxyhy-
droxides, a process by which arsenic that is sorbed to or co-precip-
itated with iron and manganese oxyhydroxides is released
(Smedley and Kinniburgh, 2002; Plant et al., 2005), and to reduc-
tion of sorbed arsenate to less strongly sorbed arsenite with subse-
quent release (Zobrist et al., 2000). However, the geochemistry of
arsenic is complex. Desorption of arsenic, an oxyanion, increases
as pH increases from circumneutral pH to elevated pH (>8) (Dzom-
bak and Morel, 1990). Arsenic mobilization through pH-induced
desorption can occur under oxidizing or reducing conditions; how-
ever, pH-induced arsenic desorption is stronger for the oxidized
form, arsenate, than for the reduced form, arsenite (Dzombak
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Fig. 2. Loadings for each of the first three components from principal components analysis (darker shade indicates loading >0.4), and percent of variance explained by each
component: (A) arsenic, uranium, and aqueous geochemical variables (left); (B) arsenic, four redox variables, and four particle-tracking variables (center); (C) uranium and
eight particle-tracking variables (right). Abbreviations: Mn, manganese; As, arsenic; O2, dissolved oxygen; Fe, iron; DOC, filtered (dissolved) organic carbon; SO4, sulfate; Alk,
alkalinity; NO3, nitrate; U, uranium; %TT Fe, percent of simulated time of travel in the Fe- and Mn-reducing zone; TT Fe median, median simulated time of travel in the Fe- and
Mn-reducing zone; TT pH8 median, median simulated time of travel in the zone of elevated pH (pH > 8); TT median, median simulated time of travel; TT O2 median, median
simulated time of travel in the O2- and NO3-reducing zone; %TT 200+, percent of simulated water flux with time of travel P200 years; TT Min, minimum simulated time of
travel; TT Max, maximum simulated time of travel; %TT 10�, percent of simulated water flux with time of travel <10 years; %Flux O2, percent of simulated water flux from the
O2- and NO3-reducing zone.
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and Morel, 1990). Oxidation of arsenic-bearing sulfide minerals
and competitive sorption are other arsenic mobilization processes
that occur in oxic environments (Welch et al., 2000; Smedley and
Kinniburgh, 2002). Thus, the association between arsenic and Mn
(and, to a lesser extent, Fe) in this analysis likely reflects the over-
riding importance of reductive desorption and dissolution reac-
tions for arsenic mobilization in the overall dataset, but
oversimplifies the true complexity of arsenic mobilization pro-
cesses in these different environments.

Component 2 of the first PCA is dominated by uranium (posi-
tive), DOC (positive), and Fe (negative). The association of uranium
with DOC, and to a lesser extent with SO4 and Alk, is consistent
with importance of complexation reactions for uranium mobiliza-
tion. Uranium solubility is strongly increased by complexation
with DOC, SO4, and carbonate (Langmuir, 1978; Garrels and Christ,
1990; Davis et al., 2004). Although SO4 is a redox indicator species,
sulfate-reducing conditions reflect strongly reducing conditions
that may be difficult to identify in the absence of hydrogen sulfide
(H2S) concentration data, and the association between uranium
and SO4 in this analysis may reflect a stronger role of SO4 in ura-
nium complexation than in characterization of redox environment.
The opposite loading of uranium and Fe is consistent with redox
controls on uranium mobilization: the oxidized form of uranium,
uranium(VI), is mobile under O2- and NO3-reducing conditions,
whereas under Fe- and Mn-reducing conditions, uranium tends
to be reduced to low-solubility uranium(IV) (Langmuir, 1978; Gar-
rels and Christ, 1990; Lovley et al., 1991).

Component 3 of the first PCA is dominated by pH and arsenic
(both positive). This association may reflect the importance of
pH-driven desorption for arsenic mobilization.

The results of the first PCA demonstrate associations between
geochemical conditions and the occurrence of arsenic and uranium
in these samples from seven study areas across the US. These find-
ings reinforce the understanding of dominant geochemical rela-
tions that control the occurrence of these natural contaminants,
understanding that could be combined with flow-model-derived
variables to better understand public supply well vulnerability to
arsenic and uranium.

The second PCA demonstrates associations among arsenic, re-
dox indicator species, and selected particle-tracking variables.
The first three PCs, shown in Fig. 2b, account for 60% of the total
variance. Component 1 is dominated by the percent of simulated
time of travel in the Fe- and Mn-reducing zone (positive), O2 (neg-
ative), and Fe (positive). The association of simulated time of travel
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in reducing zones with the measured Fe, and in inverse association
with measured O2, indicates that the redox zones represented in
the flow models capture the general redox conditions in these
systems.

Component 2 of the second PCA is dominated by median simu-
lated time of travel (positive), median simulated time of travel in
the Fe- and Mn-reducing zone (positive), arsenic (positive). These
associations suggest that arsenic concentrations generally increase
with increasing residence time in aquifers and with increasing res-
idence time in reducing portions of aquifers. The association be-
tween arsenic and median simulated time of travel reflects the
role of kinetically limited reactions in the mobilization of arsenic,
whereas the association between arsenic and median simulated
time of travel in the Fe- and Mn-reducing zone indicate that the
kinetically limited reactions that appear to control arsenic mobili-
zation may be dominated by reductive desorption and dissolution
reactions rather than by oxidizing processes.

Component 3 of the second PCA is dominated by median simu-
lated time of travel in the zone of elevated pH (pH > 8) (positive),
arsenic (positive), and NO3 (positive). These associations suggest,
again, that elevated pH may be important in the mobilization of ar-
senic, and the similarity between the associations in component 3
of the second PCA (Fig. 2b) with the associations in component 3 of
the first PCA (Fig. 2a) suggests that pH zonation in the flow model
domains captures the dominant pH patterns as reflected in mea-
sured pH in these systems. The positive loading for NO3 could indi-
cate a tendency for elevated pH conditions to be better represented
in oxidizing environments in this dataset, but similar and only
slightly lower loadings for Fe and Mn indicate that associations be-
tween zones of elevated pH and redox conditions are not well de-
fined in the overall dataset.

The results of the second PCA demonstrate associations be-
tween arsenic concentrations and overall time of travel, time of
travel through reducing zones, and time of travel through zones
of elevated pH. These findings indicate that particle-tracking vari-
ables capture important hydrodynamic controls over public supply
well vulnerability to arsenic.

The third PCA demonstrates associations between uranium and
selected particle-tracking variables. The first three PCs, shown in
Fig. 2c, account for 75% of the total variance. Component 1 is dom-
inated by median simulated time of travel, median simulated time
of travel in the O2- and NO3-reducing zone, percent of simulated
water flux with time of travel P200 years, and minimum simu-
lated time of travel (all positive). The association among these par-
ticle-tracking variables is not unexpected, given the cross-
correlation of time-of-travel variables in particle-tracking analysis.

Component 2 of the third PCA is dominated by percent of sim-
ulated water flux from the O2- and NO3-reducing zone (positive),
percent of simulated water flux with time of travel <10 years (neg-
ative), and uranium (positive). The association between uranium
and water flux from oxidizing zones is consistent with the known
importance of redox controls on uranium mobilization, as dis-
cussed above. The inverse association between uranium and per-
cent of simulated water flux with time of travel <10 years may
indicate a tendency for young ground water to contain relatively
low concentrations of uranium and old ground water to contain
relatively high concentrations of uranium, a kinetic effect analo-
gous to the apparent importance of kinetic effects for arsenic mobi-
lization (Fig. 2b). The general propensity for ground water to
evolve towards increasingly reduced conditions as residence time
increases presents a condition in which, on the one hand, older
water has more time for kinetically limited reactions such as min-
eral dissolution to proceed, potentially increasing uranium concen-
trations, and on the other hand, older water has more time to
progress to increasingly reduced conditions, potentially decreasing
uranium concentrations. The two dominant particle-tracking vari-
ables in the second component capture aspects of these competing
effects by accounting for contributions of both oxidizing ground
water and young ground water.

Component 3 of the third PCA is dominated by median simu-
lated time of travel in the zone of elevated pH (pH > 8). Consisting
of one dominant variable and explaining only a small amount
(10%) of the variance of the data, this component does not provide
useful information but is retained for consistency of presentation.

The most notable results of the third PCA are associations be-
tween uranium concentrations and both general and redox-based
particle-tracking variables. These results again indicate that parti-
cle-tracking variables can be useful in understanding public supply
well vulnerability, in this case for vulnerability to uranium.

Spearman correlation analysis

Spearman correlation analysis was used to evaluate correlations
of arsenic and uranium with selected explanatory particle-tracking
variables that represent processes responsible for arsenic and ura-
nium mobilization and transport to public supply wells (Table 2).
Although individual correlations were only moderately strong
(absolute value of Spearman’s rho 60.49), all correlations listed
in Table 2 exhibited statistical significance (p < 0.01, and com-
monly <0.0001).

Simulated time of travel was positively correlated with arsenic,
and to a lesser extent with uranium concentrations (Table 2). Also,
the percent of water flux to wells that was simulated to be young
was inversely correlated with arsenic and uranium concentrations.
These results are consistent with the hypothesis that particle-
tracking variables can be used to characterize natural contami-
nants concentrations in public supply wells.

Redox particle-tracking variables were evaluated with the
expectation that geochemically based particle-tracking variables
might be useful for characterizing arsenic and uranium vulnerabil-
ity by capturing both components of residence time to account for
the kinetics of reactions and components of geochemical condi-
tions to account for specific mobilization mechanisms. Analysis
of arsenic may have been complicated by the potential for mobili-
zation under both oxidizing and reducing conditions. Arsenic was
positively correlated with several variables representing simulated
time of travel through O2- and NO3-reducing zones, but not with
variables representing simulated time of travel through Fe- and
Mn-reducing zones (Table 2). However, these correlations with re-
dox-based particle-tracking variables were weaker than were the
correlations with general particle-tracking variables (variables
without geochemical zonation), and likely reflect correlation be-
tween general time of travel and time of travel through O2- and
NO3-reducing zones. For example, median simulated time of travel
was correlated with median simulated time of travel in the O2- and
NO3-reducing zone (Spearman’s rho 0.83, p < 0.0001), but the cor-
relation with median simulated time of travel in the Fe- and Mn-
reducing zone was not statistically significant. Thus, the weaker
correlations with variables representing simulated time of travel
through O2- and NO3-reducing zones may reflect the importance
of time of travel in general, rather than time of travel through oxi-
dizing zones.

For uranium, Spearman correlation analysis of redox particle-
tracking variables supports their use in characterizing uranium
mobilization and fate (Table 2). Uranium was positively correlated
with variables representing simulated time of travel through O2-
and NO3-reducing zones, and inversely correlated with variables
representing simulated time of travel through Fe- and Mn-reducing
zones. Fluxes of water from O2- and NO3-reducing zones also were
positively correlated with uranium concentrations. Statistically sig-
nificant correlations between uranium and particle-tracking vari-
ables that account for redox conditions were more numerous and



Table 2
Results of Spearman correlation analysis with particle-tracking variables associated with public supply wells and their contributing zones. Only significant (p < 0.01) results are
shown, such that a blank indicates p P 0.01 (rho, Spearman’s correlation coefficient; TT, simulated time of travel; O2NO3, oxygen- and nitrate-reducing; FeMn, iron- and
manganese-reducing; variable names in parentheses are abbreviated names used in Fig. 2).

Variable Arsenic (138 wells) Uranium (128 wells)

rho p rho p

General particle-tracking variables
Mean simulated TT 0.37 <0.0001
Minimum simulated TT (TT min) 0.38 <0.0001 0.30 0.0005
Simulated TT, 10th percentile 0.39 <0.0001 0.25 0.0044
Simulated TT, 25th percentile 0.39 <0.0001 0.24 0.0058
Simulated TT, 50th percentile (TT median) 0.38 <0.0001
Simulated TT, 75th percentile 0.40 <0.0001
Simulated TT, 90th percentile 0.36 <0.0001
Maximum simulated TT (TT max)
Percent of simulated flux with TT < 10 years (%TT 10�) �0.23 0.0062 �0.36 <0.0001
Percent of simulated flux with TT < 20 years �0.33 <0.0001
Percent of simulated flux with TT < 30 years �0.37 <0.0001
Percent of simulated flux with TT < 40 years �0.41 <0.0001
Percent of simulated flux with TT < 50 years �0.41 <0.0001
Percent of simulated flux with TT < 60 years �0.40 <0.0001
Percent of simulated flux with TT < 100 years �0.34 <0.0001
Percent of simulated flux with TT < 200 years �0.28 0.0010
Percent of simulated flux with TT P 200 years (%TT 200+) 0.28 0.0010

Redox particle-tracking variables
Percent of simulated flux from O2NO3 zone (%Flux O2) 0.48 <0.0001
Percent of simulated flux from FeMn zone �0.48 <0.0001
Simulated percent of zone of contribution = O2NO3 0.49 <0.0001
Simulated percent of zone of contribution = FeMn �0.49 <0.0001
Mean simulated TT through O2NO3 zone 0.29 0.0005 0.28 0.0014
10th Percentile of simulated TT through O2NO3 zone 0.29 0.0006 0.31 0.0003
25th Percentile of simulated TT through O2NO3 zone 0.27 0.0015 0.30 0.0005
50th Percentile of simulated TT through O2NO3 zone (TT O2 median) 0.28 0.0010 0.30 0.0006
75th Percentile of simulated TT through O2NO3 zone 0.32 0.0001 0.28 0.0013
90th Percentile of simulated TT through O2NO3 zone 0.30 0.0004 0.28 0.0015
Mean simulated TT through FeMn zone �0.36 <0.0001
10th Percentile of simulated TT through FeMn zone �0.43 <0.0001
25th Percentile of simulated TT through FeMn zone �0.40 <0.0001
50th Percentile of simulated TT through FeMn zone (TT Fe median) �0.48 <0.0001
75th Percentile of simulated TT through FeMn zone �0.38 <0.0001
90th Percentile of simulated TT through FeMn zone �0.37 <0.0001
Maximum simulated TT for particles from O2NO3 zone 0.28 0.0013
Maximum simulated TT for particles from FeMn zone �0.37 <0.0001
Percent of simulated TT in O2NO3 zone 0.45 <0.0001
Percent of simulated TT in FeMn zone (%TT Fe) �0.45 <0.0001

pH particle-tracking variables
Mean simulated TT through pH > 8 zone
10th Percentile of simulated TT through pH > 8 zone
50th Percentile of simulated TT through pH > 8 zone (TT pH8 median)
90th Percentile of simulated TT through pH > 8 zone
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generally stronger than those with particle-tracking variables that
did not account for redox conditions. Thus, redox-based particle-
tracking variables that capture the uranium mobilization and atten-
uation processes of mobilization under oxic conditions and attenua-
tion under reducing conditions explain important aspects of public
supply well vulnerability to natural contaminants.

Spearman correlation analysis primarily focused on particle-
tracking-derived variables because they can be used in predictive
applications. However, Spearman correlation analysis using aque-
ous geochemical data can sometimes elucidate correlations be-
tween natural contaminants and redox conditions. With the
aqueous geochemical dataset, uranium showed statistically signif-
icant (p < 0.01) correlations with NO3 (positive; Spearman’s rho
+0.41) and Fe (inverse, but weak; Spearman’s rho �0.17). This
association of uranium with oxidizing conditions is consistent with
the results of the PCA. Arsenic was not significantly correlated with
NO3, Mn, or Fe, and was significantly but only weakly correlated
with O2 (inverse; Spearman’s rho = �0.20). These results indicate
that at this scale of investigation, it is difficult to identify compet-
ing arsenic mobilization processes in a combination of diverse
aquifers with the application of simple correlation analysis.
Classification tree analysis

Classification trees were constructed using predictor (particle-
tracking and solid-phase) variables to determine if these variables
could be used to predict general patterns of arsenic or uranium
occurrence in water from public supply wells (response variables).
In this paper, we present one classification tree and test it against
an independent dataset. More complex classification tree models
could be developed and applied at other scales, given sufficient
data and understanding; such applications were beyond the scope
of this paper.

Solid-phase arsenic and uranium concentrations among study
areas were included as variables in classification tree model build-
ing to represent source strength. Site-specific solid-phase data
were not available for this study, and the use of study-unit scale
streambed sediment variables rather than site-specific solid-phase
data is a substantial limitation. Mobilization processes often over-
whelm effects of solid-phase arsenic concentrations (e.g., van Geen
et al., 2003). However, several studies at local to regional scales
have demonstrated relations between solid-phase and aqueous ar-
senic concentrations (Robertson, 1989; Peters et al., 1999; Schrei-
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ber et al., 2000; Ayotte et al., 2003; Gotkowitz et al., 2004; Polizz-
otto et al., 2008). Ayotte et al. (2006) found that arsenic in stream-
bed sediment was a significant and useful predictive variable for a
ground-water arsenic logistic-regression model. Streambed arsenic
concentrations were correlated with arsenic concentrations in both
bedrock and in ground water in a multi-state region in New Eng-
land (Robinson and Ayotte, 2006). Relations between aqueous
and solid-phase uranium concentrations appear to have received
less attention than has been the case for arsenic.

Classification trees that were reasonably accurate (those that
correctly specified aqueous concentration ranges in 70% or more
of the cases) were elusive. Classification trees generally require lar-
ger datasets than many other types of statistical analysis (Balk and
Elder, 2000); the particle-tracking variables, although numerous,
were largely redundant; and the solid-phase data were non-site-
specific. Nevertheless, one satisfactory classification tree model
was derived for arsenic (Fig. 3). The model is simple, having three
splits and four nodes. The variables are: minimum simulated time
of travel, streambed sediment arsenic concentration, and percent
of simulated water flux with time of travel P200 years. The model
assigns ground water from a public supply well in this dataset with
minimum simulated time of travel <5.1 years to the ‘‘As 62 lg/L”
category. Conceptually, this split is consistent with the results of
the PCA and Spearman’s correlation analysis, where arsenic con-
centrations were associated with time of travel.

The model next splits on streambed sediment arsenic concen-
tration. Within this category (minimum simulated time of travel
>5.1 years), water from public supply wells in regions with stream-
bed sediment arsenic concentration <12 mg/kg are considered
most likely to be in the intermediate ‘‘2 < As 6 7 lg/L” category.
Ground water in regions with streambed sediment arsenic concen-
tration >12 mg/kg is split on a third variable, percent of simulated
water flux with time of travel P200 years. Ground water in public
supply wells with a greater proportion of long simulated time of
travel is assigned to the ‘‘As >7 lg/L” category; otherwise, the
assignment is to ‘‘As <2 lg/L” category. The splits on streambed
sediment arsenic concentration and percent of simulated water
flux with time of travel P200 years are consistent with the expec-
tation that older water in environments with greater arsenic con-
centrations in solid phases should yield greater arsenic
concentrations in the aqueous phase.

We were not successful in generating robust uranium classifica-
tion trees. In addition to the challenges discussed above, a classifi-
cation tree for uranium might be limited by the particular
importance exerted by complexing agents on uranium solubility,
hinted at by PCA results. Representing the effects of aqueous com-
plexes in a predictive model could require a priori knowledge of
TT min <5.1 TT min >5.1 

Bed Sed <12 Bed Sed >12

%TT 200+  <17% %TT 200+  >17%

As ≤ 2

2 < As ≤ 7

As > 7 

As ≤ 2

Fig. 3. Classification tree model for arsenic in the combined study areas. TT min,
minimum simulated time of travel, in years. Bed Sed, streambed sediment arsenic
concentration, in milligrams per kilogram. %TT 200+, percent of simulated water
flux with time of travel P200 years. As, predicted aqueous arsenic concentration in
ground water, in lg/L. Arsenic classification tree model accuracy on learning data
subset, 70% (n = 109); on testing data subset, 79% (n = 29).
the distribution of complexing species, requiring a separate predic-
tive model. Particle-tracking and solid-phase variables have the
potential to contribute to vulnerability assessments, as demon-
strated by the arsenic classification tree. However, successful
application of these variables in vulnerability assessments will de-
pend, among other factors, on the particular contaminants of con-
cern, the scale of investigation, and on the other types of process-
based variables that might be available.

Conclusions

Evaluation of ground-water vulnerability to natural contami-
nants remains a challenging endeavor. Combining flow-model
analysis with geochemical data to evaluate ground-water vulnera-
bility, in spite of its promise, has seen little application to date.
Here, particle-tracking analysis and geochemical data were used
to assess public supply well vulnerability to arsenic and uranium
at large spatial scales in a multi-study-area dataset. Three statisti-
cal methods were used to characterize patterns of arsenic and ura-
nium occurrence; identify relevant particle-tracking and
geochemical variables that represent the dominant processes con-
trolling their mobilization, transport and fate; and demonstrate the
use of these variables in vulnerability assessment.

� PCA results were consistent with uranium mobilization under
oxidizing conditions and attenuation under reducing conditions.
Uranium was associated with particle-tracking variables that
accounted for residence time and that accounted for redox con-
ditions encountered by water particles. Analysis of arsenic with
PCA suggested that mobilization is stronger under reducing con-
ditions than oxidizing conditions in the overall dataset. Arsenic
was associated with particle-tracking variables that accounted
for overall residence time as well as residence time in reducing
zones and in zones of elevated pH.

� Spearman correlation analysis demonstrated statistical signifi-
cance in the correlation between uranium concentrations and
particle-tracking variables, with strongest correlations for parti-
cle-tracking variables that accounted for aquifer redox condi-
tions. Arsenic concentrations were statistically correlated
primarily with general (independent of redox) particle-tracking
variables.

� A classification tree model demonstrated an application of some
of these variables in a screening-level predictive model for pub-
lic supply well vulnerability to arsenic.

Vulnerability assessments often focus on anthropogenic con-
taminants, and often implicitly or explicitly attribute a lower vul-
nerability to relatively old water. A potentially underappreciated
consequence of this focus could be greater vulnerability of ground
water to natural contaminants. This could arise from the tendency
for concentrations of many natural contaminants to increase with
increasing ground-water residence time, a pattern that was ob-
served in this multi-study-area dataset and shown to be useful in
vulnerability analysis. Comprehensive vulnerability assessments
might benefit from expanded use of estimates of ground-water
age and other flow-model-based variables in combination with
an awareness of the possible balances between anthropogenic
and natural contaminant vulnerability.
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