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Abstract
A Monte Carlo-based approach to assess uncertainty in recharge areas shows that incorporation of atmospheric

tracer observations (in this case, tritium concentration) and prior information on model parameters leads to
more precise predictions of recharge areas. Variance-covariance matrices, from model calibration and calculation
of sensitivities, were used to generate parameter sets that account for parameter correlation and uncertainty.
Constraining parameter sets to those that met acceptance criteria, which included a standard error criterion, did
not appear to bias model results. Although the addition of atmospheric tracer observations and prior information
produced similar changes in the extent of predicted recharge areas, prior information had the effect of increasing
probabilities within the recharge area to a greater extent than atmospheric tracer observations. Uncertainty in the
recharge area propagates into predictions that directly affect water quality, such as land cover in the recharge
area associated with a well and the residence time associated with the well. Assessments of well vulnerability
that depend on these factors should include an assessment of model parameter uncertainty. A formal simulation
of parameter uncertainty can be used to delineate probabilistic recharge areas, and the results can be expressed
in ways that can be useful to water-resource managers. Although no one model is the correct model, the results
of multiple models can be evaluated in terms of the decision being made and the probability of a given outcome
from each model.

Introduction
Agencies at many levels of government have statutes

and regulations to protect the quality of drinking water
by managing land uses that overlie aquifers. The principle
behind this approach is that it is less costly to prevent than
to remediate groundwater contamination. Land use and
shallow groundwater quality are related (Grady 1994), so
it makes sense to manage land use in areas that contribute
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water to a pumping well. Areas contributing recharge to
a well hereinafter will be referred to as “recharge area”
for brevity. Numerical models of groundwater flow are
commonly used to delineate recharge areas, and although
models often do not lead to accurate predictions (Konikow
1986), they can lead to insight that can be used to protect
groundwater.

Many studies have delineated recharge areas using
techniques from simple analytical models to complex
numerical models. Some of these studies, discussed in the
following section, addressed the role of data uncertainty
on model predictions such as recharge areas. The present
work extends those efforts by demonstrating the effect
of different types of information (atmospheric tracers and
prior information) on simulated recharge areas. We also
consider the effect of uncertainty in recharge area on
the estimated percentages of land cover and residence
time associated with the recharge area. Sensitivity-based
Monte Carlo simulations using a numerical model are
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used in this study to assess the effects of (1) atmospheric
tracer observations and (2) prior information on parameter
values that are poorly constrained by available data. The
atmospheric tracer used in this study was tritium, but the
analysis applies to other atmospheric tracers such as sulfur
hexafluoride and chlorofluorocarbons.

Previous Studies
The groundwater-modeling literature describes many

approaches for simulation of probabilistic recharge areas.
For example, Bair et al. (1991) used a Monte Carlo
approach to assess uncertainty in recharge areas to wells.
They used assumed parameter distributions (with covari-
ance) in an analytical model, and they did not consider
complex cases. Varljen and Shafer (1991) used condi-
tioned random fields of hydraulic conductivity in a Monte
Carlo simulation. This approach accounts for geologic het-
erogeneity but not for parameter uncertainty. Tiedemann
and Gorelick (1993) used a Monte Carlo approach as the
basis on which to test their first-order uncertainty model.
Their work was done in the context of a small-scale plume
and was not done at the scale of a recharge area. Cooley
(1997) compared four methods of estimating confidence
intervals on model predictions of head and flow, one of
which was similar to the Monte Carlo approach applied in
this article. He found that the Monte Carlo method did not
perform well compared to the other methods in all cases,
but his model was highly nonlinear and the parameter esti-
mates were not conditioned on a goodness-of-fit criterion.
Feyen et al. (2003), among others, used a general likeli-
hood estimator with spatially random fields of hydraulic
conductivity. Morse et al. (2003) used a similar technique
but without spatially random fields of hydraulic conductiv-
ity. The general likelihood estimator requires that a prior
distribution of all parameters be estimated. One drawback
to this method is that the results are dependent on the
choice of prior distribution. Another approach that has
been used is the adjoint-state method. Kunstmann and
Kastens (2006) used a first-order second-moment simu-
lation, which assumes that the model is linear and that
higher order terms in the error model contribute signifi-
cantly to the overall error. Neupauer and Wilson (2004)
and Frind et al. (2006) used the adjoint-state method with
a numerical solution to the advection-dispersion equation
(ADE) to simulate the backward dispersion of probability.
The dispersion term accounts for small-scale uncertainty
in aquifer material but does not account for uncertainty in
parameter values.

Many of the previously discussed studies assess the
effect of random, spatially varying hydraulic conductivity
on recharge areas, but they do not address uncertainty
caused by estimates of parameter values. Parameter value
uncertainty has been addressed in several studies in
which the variance-covariance matrix generated during
model calibration was used as the basis for Monte Carlo
simulation. Starn et al. (2000), Starn (2001), and Hunt
et al. (2001) delineated the uncertainty in recharge areas
to a well and to a spring, respectively, using a Monte
Carlo approach. Similar approaches were used by Lindsey

(2005) to delineate recharge areas to multiple wells,
by Starn (2006) to site future monitoring wells near a
pumping well, and by Starn and Brown (2007) to relate
uncertainty in the recharge area to areas of land use that
might affect well water quality.

The Monte Carlo method, as applied here, is different
from previous efforts because parameter sets were derived
from the variance-covariance matrix calculated from a
model sensitivity analysis and because the Monte Carlo
runs were subjected to a series of acceptance criteria to
ensure that reasonable model runs were obtained. This
method accounts for uncertainty in parameter values and
as such accounts for the spatial variability of parameter
values to the extent that spatial variability is defined
in the model, as well as the variability of boundary
coefficients that are defined as parameters. This method,
like most other methods, assumes that the structure of
the model is correct, that is, that the modeler has defined
the model geometry and boundaries in accordance with
known hydrogeology, and that this knowledge is sufficient
to describe the behavior of the system. In reality, the actual
hydrogeology is never completely known, and changes in
information about the hydrogeology can lead to changes
in the model, which are not accounted for here.

Moore and Doherty (2005) assessed the sensitivity
of model predictions to calibration data. They show
mathematically that it is critical to calibrate a model
using the types of data for which predictions will be
made; otherwise the calibration data may not contain
much information about the parameters that govern the
processes that produce the predictions of interest. For
example, Sheets et al. (1998) used atmospheric tracers to
improve the calibration of the groundwater flow model.
In their study, the information provided by atmospheric
tracer observations led to changes that improved model
fit. For this reason, atmospheric tracer observations are
used in this study to predict probabilistic recharge areas.

Description of the Calibrated Model
The methods described in this article were applied

to an existing calibrated model of groundwater flow in
the aquifer system near Woodbury, Connecticut (Starn
and Brown 2007). Details describing the geologic setting,
model development, and model calibration are available
at http://pubs.usgs.gov/sir/2007/5210/ and are summarized
in Table 1. The model was developed to simulate flow
paths from the recharge area of a pumping well to the
well as part of the transport of anthropogenic and natural
compounds topical study within the USGS National Water
Quality Assessment. The model simulates groundwater
flow in part of a small New England watershed. The
principal aquifer consists of valley-fill glacial sand and
gravel deposits. The simulation also includes groundwater
flow in uplands adjacent to the valley through glacial till
and (or) fractured rock into the valley-fill aquifer. Water
in the glacial aquifer discharges to surface streams and to
one pumping well in the modeled area. The flow system
is characterized by extreme heterogeneity on a large scale
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Table 1
Model Grid and Calibration Data

Active Modeled Area (km2) 15
Pumped Well Discharge (m3/d) 392
Groundwater Inflow (m3/d) 16,604
Grid Cell Row Dimension (m) 15
Grid Cell Column Dimension (m) 15
Grid Thickness (m) 20
Number of Layers 7
Number of Rows 241
Number of Columns 322
Number of Head Observations 97
Number of Streamflow Observations 1
Number of Atmospheric Tracer Observations 14
Number of Parameters, Excluding Porosity 11
Number of Porosity Parameters 4

(between crystalline rock and sand and gravel), but within
each of the hydrogeologic domains, small-scale hetero-
geneity is not simulated. The model uses 11 hydraulic
conductivity parameters, listed with their parameter abbre-
viations in square brackets: the horizontal hydraulic con-
ductivity of two facies within the glacial stratified deposits
(fluvial [Kfluv] and deltaic [Kdelt]), two tills (compact
till [Ktcom] and noncompact till [Ktnon]), two types of
bedrock (Paleozoic crystalline [Kxln] and Mesozoic sed-
imentary [Kmeso]), fine-grained glaciolacustrine deposits
(Kfine), and streambed vertical hydraulic conductivity
(Ktrib); and the vertical hydraulic conductivity of com-
bined glacial stratified deposits (Kvgsd), combined till
(Kvtill), and combined bedrock (Kvrock). Recharge was
estimated independently using a calibrated rainfall-runoff
model (D.M. Bjerklie, USGS, written communication,
2007) and was not adjusted in model calibration. Four
additional porosity parameters were used in the advective
particle tracking model: glacial stratified deposits (Pgsd),
noncompact till (Ptill), compact till (Ptt), and bedrock
(Prock).

The model originally was calibrated to hydraulic head
and streamflow observations using nonlinear regression
(Cooley and Naff 1990; Aster et al. 2005; Hill and Tiede-
man 2007). Some advantages of nonlinear regression over
other calibration methods are that it produces optimal
parameter estimates and the variance-covariance matrix of
those estimates. Groundwater residence times were simu-
lated using particle tracking (Pollock 1994), and porosity
was adjusted manually to match tritium-helium appar-
ent ages (Starn and Brown 2007). Nonlinear regression
was not used to calibrate the model to atmospheric tracer
observations. All parameters were transformed for the
regression by taking their base 10 logarithm. The model
was sensitive to 6 of the 11 model parameters and their
values were estimated in the regression (Ktcom, Kfluv,
Kdelt, Kmeso, Kxln, and Ktrib); however, the model was
not sensitive to the remaining five parameters, and their
values were fixed at values cited in the literature (Starn
and Brown 2007).

Methodology
The effects of adding a set of atmospheric tracer

data and prior information on uncertainty in simulated
recharge areas were assessed by running a suite of
Monte Carlo simulations that either included or omitted
the full set of tracer data and (or) prior information.
Particle tracking was used in each parameter set in the
Monte Carlo simulation to identify the recharge area and
the associated residence-time distribution. The effect of
parameter uncertainty on predictions of the recharge area
is shown on maps of the probabilistic recharge area and
on graphs showing the probability distributions of land
cover and residence-time distribution in the recharge area
associated with the well.

In this study, the original model was re-run using
MODFLOW-2005 (Harbaugh 2005), and advective par-
ticle tracking was done using MODPATH (Pollock
1994). Sensitivity calculations and variance-covariance
matrices were computed using UCODE (Poeter et al.
2005). MODPATH simulates advective transport based
on groundwater velocities interpolated from cell faces
between finite-difference cells. This method does not
account for diffusion or dispersion caused by small-scale
advection. Dispersion causes smearing of the residence-
time distribution, but the effect of this is beyond the scope
of this article and will be addressed in future studies.
This method also does not account for transport across
the unsaturated zone, which should be minimal at this
site because of the shallow depth to water.

Simulated Equivalents of Atmospheric Tracers
To use atmospheric tracer observations in the model,

simulated equivalents to the observations needed to be
constructed from the model output. The atmospheric tracer
observations consisted of tritium concentrations measured
in samples collected in 2003 and 2004 from 15 moni-
toring wells near the pumping well (Brown et al. 2009).
Monitoring well screen lengths varied but were on the
order of 3 m, and the wells were minimally pumped
prior to sampling, so that the samples were consid-
ered to represent the resident concentration in the well.
Flow paths to monitoring well screens were simulated
by reverse tracking 10 evenly spaced particles from the
vertical interval of the screen. The arithmetic mean of
the 10 particle travel times was used to generate the sim-
ulated equivalent concentration for comparison to atmo-
spheric tracer observations. The date of recharge was
calculated by first subtracting the mean advective travel
time from the date of sampling and then assigning a con-
centration to the well equal to the concentration in equilib-
rium with the atmosphere for the computed recharge date.
Atmospheric inputs for tritium were estimated using a pro-
gram that calculates tritium concentrations for specified
latitude-longitudes by extrapolating results from stations
where tritium in precipitation has been measured (Michel
1989). The simulated tritium concentration was decayed
using the half-life of tritium. An arithmetic mean, con-
verted to a concentration, may be valid for particle travel
times with a small amount of variability, but the input
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function of atmospheric tracers generally is nonlinear. The
greater the variability of travel times, the less accurate
this method would be. In the model, the average range
of simulated residence times over the length of monitor-
ing well screens was about 0.8 years (Starn and Brown
2007). Because of the small range, the arithmetic mean
was considered valid.

Use of Prior Information
Although a variance-covariance matrix can be cal-

culated that includes poorly constrained parameters, the
variances and covariances that result may be unrealis-
tically large. In order to “steer” the calculation toward
realistic values, prior information can be applied to model
parameters. As described by Hill and Tiedeman (2007),
“prior information” is a form of regularization wherein
the weighted difference between the parameter value and
the prior information value is added to the sum of squared
weighted residuals objective function. To simulate the
effect on the simulated recharge area of parameter values
that are poorly constrained by available data, prior infor-
mation was applied to those parameters. Prior information
estimates can be obtained by collecting field measure-
ments; however, in this study, the optimal values from the
original model were used, which were based on literature
values (Starn and Brown 2007).

Confidence in prior information values are reflected
in weights assigned to them by the modeler. In UCODE,
weights are the inverse of the measurement variance of the
observation and are calculated based on statistics (standard
deviation, variance, or coefficient of variation) input by
the user (Poeter et al. 2005). In this study, the coefficient
of variation (standard deviation of the parameter estimate
divided by its mean value) was used because the statistics
are then independent of the parameter value. The weight
is calculated in UCODE as a function of the prior
information value and the coefficient of variation, and
the same coefficient of variation was used to calculate
weights for all prior information within a given Monte
Carlo simulation. High coefficients of variation indicate
parameter values that are not well-known and hence
produce low weights. The coefficients of variation tested
in this study were 1.0 (low confidence) and 0.0001
(high confidence), and the simulations produced using
them are identified by the terms “prior information” and
“reduced parameter set,” respectively. A coefficient of
variation equal to 0.0001 essentially fixed the parameter
value at its optimal value, thus in effect reducing the
number of parameters that can vary in the sensitivity
analysis. Prior information was assigned to the parameters
that were not estimated using nonlinear regression in
the original model because the model was relatively
insensitive to them (Starn and Brown 2007). Porosity was
not included as an estimated parameter in the original
model, and prior information was included on two of the
four porosity parameters because of their relatively low
sensitivity.

Calculating the Variance-Covariance Matrices
Variance-covariance matrices were calculated as a

function of the sensitivity to changes in parameter values
of the original calibration data combined with new infor-
mation consisting of atmospheric tracer concentrations
and prior information values. Variance-covariance matri-
ces were calculated with UCODE (Poeter et al. 2005),
which uses a perturbation method wherein sensitivities
are approximated by discrete differences in model param-
eters. Sensitivities were calculated for each simulation at
the optimal parameter values determined in the original
model calibration. The sensitivity matrix (also called the
Jacobian matrix) was calculated by assembling the indi-
vidual sensitivities of the system as follows

J =
∣
∣
∣
∣
∣
∣

X11 X12 X13

X21 X22 X23

X31 X32 Xij

∣
∣
∣
∣
∣
∣

(1)

where J is the sensitivity, or Jacobian, matrix; Xij =
∂yi /∂xj ; yi is the ith observation of the system; and xj is
the j th parameter of the system.

In simulations where prior information is included,
the sensitivity matrix is augmented such that the sensi-
tivities to the prior information are included as additional
rows at the bottom of the Jacobian matrix. The variance-
covariance matrix was calculated using the sensitivity
matrix and the weights assigned to parameter values and
prior information as

V = s2(J TωJ)−1 (2)

where V is the variance-covariance matrix; s2 is the
calculated error variance of the regression (the expected
value of the weighted sum of squared differences between
observed and simulated values); J is the Jacobian
matrix (superscript T indicates transpose); and ω is the
observation weight matrix.

From the preceding equation, it is seen that the
variance-covariance matrix is a function of the sensitivi-
ties Xij ; therefore, adding atmospheric tracer observations
and prior information to the sensitivity calculations alters
the variance-covariance matrix, even without recalibrat-
ing the model. Parameter variances are the diagonal ele-
ments of this matrix, and the off-diagonal elements are
the covariances between parameters. The parameter stan-
dard deviations discussed herein are the square roots of
the diagonals of the variance-covariance matrix.

Generating Parameter Realizations
The next step in the analysis was to generate a large

number (10,000 in this study) of parameter sets, the
ensemble of which has the same mean parameter values
as the optimal (calibrated) values and the same parame-
ter variance-covariance matrix as the calibrated model.
Parameter sets were generated by taking the Cholesky
decomposition of the variance-covariance matrix and mul-
tiplying the results by randomly generated numbers from
a normal distribution. True parameter values probably are
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not from a normal distribution (Cooley 1997), and this
remains an unexplored source of error. Restricting the
parameter sets to those that reproduce the observation data
to within a specified tolerance mitigates this source of
error to some extent. Parameter sets were generated using
the definition of a standard normal variable:

R = V 1/2N + B (3)

where R is a set of parameter values; V 1/2 is the matrix
square root of the variance-covariance matrix, calculated
using Cholesky decomposition; N is a vector of normally
distributed random numbers with a mean of 0 and standard
deviation of 1; and B is the vector of the optimal
parameter values.

In order to ensure that parameter distributions were
being sampled completely and efficiently, a stratified
random sampling method known as the Latin hypercube
sampling (LHS) was used (Hossain et al. 2006). To
implement LHS, parameter distributions were divided
into 20 equally probable regions, which were then
sampled randomly. A rank correlation process was used to
ensure that the random parameter values approximate the
variance-covariance matrix from calibrated model (Iman
and Conover 1982). The Monte Carlo simulation used
parameter sets in groups of 20, so that each region of the
input distribution was sampled before the closure criterion
was deemed met.

In this study, 10,000 sets of parameters were initially
generated and stored because: (1) it was computationally
inexpensive to generate this number of sets, (2) the
normal distributions of the parameters were accurately
represented, (3) specific parameter sets could be re-
run, and (4) it was unknown at the outset how many
parameters sets would be needed. Only a small number
of the 10,000 parameter sets needed to be run before the
probability completion criterion was met.

Running the Monte Carlo Simulations
Probabilistic recharge areas were delineated using a

suite of Monte Carlo simulations comprising six variations
of tracer data and prior information. Three of the six
variations included tracer observations and three omitted
them. Within each group of three, one simulation was
run using the full set of parameters, one was run using
prior information, and one was run using a reduced
parameter set. Monte Carlo simulation involves running
each variation for a large number of parameter sets and
expressing the ensemble of the results in probabilistic
terms. For each model run, one particle was placed on
the top face of the top model layer (representing land
surface) and tracked forward to its discharge point. The
probability that a given particle started in the recharge area
to the well was the number of model runs in which the
particle reached the well divided by the total number of
model runs. The Monte Carlo simulation was considered
complete when the maximum change in probability
for any particle from the previous run was less than
0.01 (1%).

A given set of parameter values is not guaranteed to
produce a good model fit, so acceptance criteria were used
to ensure that the model runs were reasonable. These cri-
teria were that the model had to: (1) converge, (2) have
a mass balance error of less than 0.05 (5%), (3) have a
standard error less than 20, and (4) have at least one parti-
cle that ended in the cell that simulated the pumping well.
To save simulation time, the criteria were applied sequen-
tially, so that particle tracking was not done for runs with
an unacceptable mass balance error. The last two criteria
warrant further explanation. The standard error criterion
of 20 was based on a subjective assessment of the calcu-
lated standard error from the original model. The standard
error (dimensionless; the square root of the calculated
error variance) depends on the observation weights. If the
observation weights reflected only measurement error, the
standard error should equal 1.0, and deviations from 1.0
indicate possible model error (Hill and Tiedeman 2007).
The standard error was 6.2 in the model, indicating that
model error was present. The standard error criterion was
chosen arbitrarily to be larger than standard error of the
model to accept models that did not fit the observed data
well while rejecting those with particularly poor fits, and
more work could be done to explore this criterion.

The criterion relating to particles ending in the pump-
ing well cell was necessary because the model cell con-
taining the well became a weak sink for some parameter
realizations. If the flow rate of water into the cell equals
the discharge of the well (in a steady-state model), the
cell is a strong sink and all particles that enter the cell
stop at the well. The model was designed such that the
well cell was a strong sink. However, in the Monte Carlo
simulations, a small number of parameter sets (Table 2)
caused flow into the cell to be greater than the discharge
of the well (a weak sink). MODPATH requires the user to
specify what happens to particles in a weak sink, and in
this study, particles were set to pass through weak sinks.
This criterion eliminates parameter sets that create a weak
sink at the well.

The general steps in the Monte Carlo simulations
employed in this study are summarized as follows.

1. Calculate the sensitivities of each observation, includ-
ing the new atmospheric tracer observations and (or)
prior information, using UCODE.

2. Calculate the variance-covariance matrix from the
sensitivities using UCODE.

3. Generate parameter realizations using LHS and the
method of Iman and Conover (1982).

4. Substitute a parameter realization into MODFLOW-
2005 input files and run the model.

5. If the model converged and the mass balance error was
less than 5% go to the next step, otherwise go back to
step 4.

6. If tracer observations were included, substitute a
porosity realization into MODPATH input files.

7. Run MODPATH.
8. Calculate the simulated equivalents for the observa-

tions and calculate the standard error using UCODE.
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Table 2
Summary of Monte Carlo Simulations

Atmospheric Tracer Omitted Atmospheric Tracer Included

Full Parameter
Set

Prior
Information

Reduced
Parameter Set

Full Parameter
Set

Prior
Information

Reduced
Parameter Set

Total Number of Monte Carlo Runs

260 240 120 200 180 120
Sequentially Applied
Acceptance Criterion Percentage of Total Monte Carlo Runs Meeting Criterion

1. MODFLOW-2005
convergence

77 90 100 98 99 100

2. Mass balance error
less than 5%

73 66 88 74 76 87

3. Standard error less
than 20

40 40 88 53 62 87

4. No weak sinks 39 39 88 52 61 87

Number of Monte Carlo Runs Meeting All Criteria

101 94 105 104 110 104

9. If the standard error was less than 20, and the well cell
was not a weak sink, go to the next step, otherwise go
back to step 4.

10. Save the residence time of each particle that reached
the well.

11. Calculate the probability that each particle reached the
well.

12. If the maximum difference in the probability for all
particles was less than 0.01, go to the next step,
otherwise go back to step 4.

13. Summarize the probability, land cover, and residence
time for the recharge area.

Effect of Recharge Area Uncertainty on Land Cover and
Residence-Time Distribution

Uncertainty in model parameters translates into
uncertainty in the recharge area of a well, which in turn
translates into uncertainty on estimates of the types of land
cover in the recharge area and the flow-weighted mean
residence time at the well. To calculate the flow-weighted
mean residence time, the fraction of flow supplied by each
particle was calculated by dividing the recharge rate asso-
ciated with the particle by the sum of the recharge rates
for all the particles that enter the well. The fractional flow-
weighted residence time was calculated by multiplying the
fractional flow rate of each particle by its residence time
(the “age mass” described by Goode 1996). The residence-
time distribution of water at the well was given by the set
of flow-weighted fractional ages on all particles, and the
mean residence time was the sum of the flow-weighted
fractional ages. The mean residence time was used in this
study to show the effect of parameter uncertainty on the
residence time from particles starting in a particular land
use; however, the mean residence time obscures the fact
that water from a pumping well is a mixture of water with
a potentially wide range of residence times.

Results of Simulations
All Monte Carlo simulations met the probability

closure criterion in not more than 260 runs (Table 2). In
each of the simulations, about 100 runs met all of the
acceptance criteria, as can be seen on the last row of
Table 2. Simulations with the reduced parameter set met
the acceptance criteria most of the time whether tracer
observations were included (87%) or omitted (88%).
For the simulations with prior information and with
full parameter sets, including tracer observations was
advantageous in the sense that a higher percentage of
runs met all acceptance criteria. The most restrictive
acceptance criterion was the standard error criterion for
the full parameter set and prior information simulations
when tracer observations were omitted. The weak sink
criterion had little effect on the number of accepted runs.

Effect of Atmospheric Tracer and Prior Information
on Model Predictions

The addition of atmospheric tracer observations and
prior information reduced the standard deviation of each
parameter relative to the “tracer omitted/full parame-
ter” simulation (Table 3). For example, in the “tracer
included/full parameter simulation,” the standard devia-
tion decreased between 9% (parameter Ktrib) and 67%
(parameter Ktcom). For the same simulation, the stan-
dard deviation of the five parameters (last five rows of
Table 3) that were poorly constrained by the model also
decreased (by 24 to 62%). Decreasing the standard devi-
ation of these parameters generally is the goal of adding
prior information; however, adding prior information on
poorly constrained parameters also reduced the standard
deviations of other parameters, and a similar effect was
achieved by including tracer observations.
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Table 3
Reduction in Parameter Standard Deviation

Atmospheric Tracer Omitted Atmospheric Tracer Included

Full Parameter
Set

Prior
Information

Reduced
Parameter Set

Full Parameter
Set

Prior
Information

Reduced
Parameter Set

Parameter

Parameter
Standard
Deviation

Percentage Reduction in Standard Deviation Relative to the Simulation
with Atmospheric Tracer Data Omitted and a Full Parameter Set

Kdelt 0.160 13 25 13 19 52
Kfluv 0.071 3 28 35 51 55
Ktrib 0.220 5 18 9 14 80
Ktcom 1.900 16 87 67 74 91
Kmeso 0.100 4 58 19 36 58
Kxln 0.120 8 47 17 32 53
Ktnon 0.470 91 1001 23 361 1001

Kvtill 2.100 141 1001 60 631 1001

Kfine 0.800 61 991 24 261 991

Kvgsd 7.700 391 1001 62 691 1001

Kvrock 0.420 101 1001 40 431 1001

1Indicates a parameter to which prior information was applied.

Correlation between parameters leads to model
nonuniqueness and can cause problems in model calibra-
tion; however, correlation coefficients between pairs of
parameters less than 0.85 often are not significant. Two
pairs of parameters had correlation coefficients greater
than 0.85—Ktcom/Kvtill and Prock/Ptt. Adding tracer
observations decreased correlation between Ktcom/Kvtill
(Prock/Ptt were porosity parameters that were not used
when tracer observations were omitted) (Table 4). For the
reduced parameter sets, all correlation coefficients were
less than 0.85.

One concern with using acceptance criteria was that
by eliminating parameter sets that produced model runs
not meeting the criteria, the original parameter distribu-
tions would not be maintained. For each Monte Carlo sim-
ulation, plots were made of parameter distributions using
all 10,000 parameter sets and only those parameter sets
included in the accepted Monte Carlo runs. An example
for the Kxln parameter is shown on Figure 1. Some
deviations from the original distributions were expected
because of the lower number of parameters, but in gen-
eral, the parameter distributions for 10,000 parameter
sets (Figure 1B) are similar to the parameter distributions
derived using only model runs that met the acceptance
criteria (Figure 1A). This result indicated that bias caused
by the acceptance criteria was minimal.

The effects of better (narrower) parameter distribu-
tions are manifested in the shape and size of the prob-
abilistic recharge areas (Figures 2A to 2D). The largest
recharge area was produced with the simulation with the
full parameter set and no atmospheric tracer observations
(Figure 2A). Adding either atmospheric tracer observa-
tions or prior information reduced the overall size of
the recharge area similarly (Figures 2B and 2C); how-
ever, with the reduced parameter set, the probabilities

Table 4
Parameter Correlation Coefficients

Correlation Coefficients, Shown
Where Greater Than 0.85

Parameter Pair
Atmospheric

Tracer Omitted
Atmospheric

Tracer Included

Full parameter set

Ktcom-Kvtill 0.98 0.87
Prock-Ptt — 0.90

Prior information

Ktcom-Kvtill 0.98 0.89

Reduced parameter set

No parameter correlations greater than 0.85 were found for the reduced
parameter sets.

were higher in the center of the recharge area than with
atmospheric tracer observations alone. Adding both prior
information and atmospheric tracer observations led to
the smallest recharge area having the highest probabilities
(Figure 2D).

Estimates of the area of a given land cover in the
recharge area depended on the spatial distribution of that
land cover (shown in Starn and Brown 2007) as well as the
choice of whether to include tracer observations or prior
information. Uncertainty in the area of a given land cover
could be important if, for example, well vulnerability
were assessed based on the type of land cover in the
recharge area. For example, simulations that included
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Figure 1. Parameter distributions for model parameter
Kxln for: (A) Monte Carlo runs meeting acceptance criteria
and (B) 10,000 parameter sets.

prior information showed that the most probable area of
developed land cover in the recharge area was zero, but
the simulation with the full parameter set showed that the
most probable area was 16 hectares (Figure 3). In both
cases, adding tracer observations did not change the result
significantly.

Uncertainty in the size and shape of the recharge area
affected the distributions of flow-weighted mean residence
time of water that enters the well (Figure 4). The simula-
tions that included tracer observations also included poros-
ity parameters, and the additional uncertainty in porosity
led to more uncertainty in the mean residence time. This
additional uncertainty is “real” because estimates of poros-
ity are uncertain. Not including the effects of this uncer-
tainty underestimates the overall uncertainty in residence
time. The distribution of mean residence times, when con-
sidering only the part of the recharge area overlain by
developed land cover, is less affected by porosity uncer-
tainty. This is because the developed areas are in less
uncertain parts of the overall recharge area. This could
be of interest, for example, if the residence time at the
well, in addition to the land cover in the recharge area, is
considered to be a factor in well vulnerability.

Discussion
Reductions in standard deviations on individual

parameters seemed to suggest that atmospheric tracer
observations had at least as strong an influence on param-
eter value uncertainty as prior information because adding
atmospheric tracer observations and prior information
individually reduced the size of the recharge areas about
the same. The probabilities within the recharge area were
higher in the simulation with prior information, suggesting
that the model prediction of recharge area is sensitive
to model parameters that are not well constrained by
the available data. In this study, the model was not

recalibrated, and different results might be obtained if it
had been. In particular, the calculated error variance would
be expected to become smaller, although with models that
are well calibrated, the reduction might be small.

Recharge areas are the basis for calculating many
important factors that contribute to well vulnerability. It
makes intuitive sense that using direct observations of
water quality (in this study, atmospheric tracer observa-
tions) in model calibration will lead to better predictions
of recharge areas. Atmospheric tracer observations contain
information about the length and position of groundwater
flow paths, flow rates through the aquifer, and residence-
time distributions. The inclusion of atmospheric tracer
observations, prior information, and the choice of weights
can be a somewhat arbitrary undertaking. Although both
types of information can reduce variance in model predic-
tions, the effects need to be considered carefully.

Well vulnerability is, in part, a function of recharge
rate, residence time, land cover, and uncertainty in the
simulated recharge area. Combinations of this information
can be shown graphically. A subset of the probabilistic
recharge area shown in Figure 2D, for example, shows
the probability that water with a residence time of 5 years
or less reaches the well (Figure 5). This probability was
the number of times, out of all the runs in a Monte
Carlo simulation, those particles whose residence time
was 5 years or less ended in the pumped well, divided by
the total number of accepted runs. Five years was selected
for this example as a minimal time frame for responding to
aquifer contamination. This type of map may be a useful
tool for prioritizing areas within an aquifer for protection
and for placement of monitoring wells.

Although no one model is the “correct” model, the
results of multiple models can be evaluated in terms of
the decision being made and the probability of a given
outcome from each model. In this example (Figure 6),
the results of two models, one with atmospheric tracer
observations and one without atmospheric tracer observa-
tions, are evaluated in terms of the percentage of water
produced from the well. In both models, there is about a
20% probability that 100% of the water is young (arbitrar-
ily defined as less than 5 years old for this example). At
40% probability, the percentage of young water predicted
by the two simulations is the same (about 83%). There is a
100% probability that the percentage of young water was
30% and 60% for the simulations with atmospheric tracer
observations and without atmospheric tracer observations,
respectively. If different models agree that there is a high
probability that young water is a large percentage of water
from the well, then the well might be deemed vulnerable.
If it is critical to know what percentage of well water
is young, but the probabilities are low, there are several
remedies, including improving the model structure and
(or) using more and different data to calibrate the model.
The result of both these actions is that parameter values
could be estimated with more certainty (Figure 6).

One of the perceived drawbacks of the Monte Carlo
method is that it can be computationally intensive; how-
ever, the number of runs needed depends on the prediction
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Figure 2. Probabilistic contributing recharge areas from Monte Carlo simulations.

of interest. If reasonable predictions can be made with
a realistic number of runs, the technique is viable com-
pared to first-order or ADE-based methods. Monte Carlo
simulation has the additional benefits of being easy to
understand, applicable to a wide variety of flow condi-
tions and models, and is trivially parallelizable to reduce
overall run times.

Conclusions
The addition of information reduces the standard

deviation and correlation within and among parameter dis-
tributions. In particular, using atmospheric tracer observa-
tions and prior information on model parameters improves

model predictions of recharge areas. Atmospheric tracer
observations are an effective means to reduce standard
deviation of parameter estimates, similar to the reduc-
tions achieved by adding prior information on parameter
estimates. Additional information also reduces correla-
tion among parameters. The use of acceptance criteria
in the Monte Carlo simulations generally did not intro-
duce bias in mean parameter values. Although the addition
of atmospheric tracer observations and prior information
had similar changes in the extent of predicted recharge
areas, prior information had the effect of increasing prob-
abilities within the recharge area to a greater extent than
atmospheric tracer observations. This could be because the
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Figure 3. Probability distributions of areas of developed
land cover in the contributing recharge area from Monte
Carlo simulations.
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Figure 4. Mean residence-time distributions in the recharge
area from Monte Carlo simulations for the developed land
cover and for all land covers.

recharge area was sensitive to parameters whose distribu-
tions were not improved by the addition of atmospheric
tracer observations. Prior information has to be applied
carefully. Excluding insensitive parameters from the anal-
ysis by fixing their values is akin to placing high (and
possibly unwarranted) weights on their estimates.

Uncertainty in the recharge area propagates into
predictions that directly affect water quality predictions,
such as land cover in the recharge area associated with
a well and the residence time at the well. Assessments
of well vulnerability that depend on these factors should
include an assessment of model parameter uncertainty. A
formal simulation of parameter uncertainty can be used
to delineate probabilistic recharge areas, and the results
can be expressed in ways that might be useful to water-
resource managers. Examples include examining the prob-
ability that a given land cover is in the recharge area,
mapping the probability that a given area within the
recharge contributes water of a given residence time, and
combining probability, residence time, and percentage of
well discharge in graphs that depict the cumulative prob-
ability that water of a given age makes up a given per-
centage of the well discharge. Although no one model is

Figure 5. Probability that residence time is less than 5 years
for individual particles that were started at the land surface
and tracked to the well.
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Figure 6. Probability that water with a residence time of less
than 5 years (“young water”) provides a given percent of
water pumped from the well.

the correct model, the results of multiple models can be
evaluated in terms of the decision being made and the
probability of a given outcome from each model.
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